If it's not what You are looking for type in the equation solver your own equation and let us solve it.
j^2+9j=0
a = 1; b = 9; c = 0;
Δ = b2-4ac
Δ = 92-4·1·0
Δ = 81
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$j_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$j_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{81}=9$$j_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(9)-9}{2*1}=\frac{-18}{2} =-9 $$j_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(9)+9}{2*1}=\frac{0}{2} =0 $
| 3x-6=38+x | | 3(k+2)=18 | | 4n+6=142 | | 1/4*x+-45=-11 | | 4(-1)+x=27 | | u+2.8=9.39 | | 4×-1+x=27 | | 8x+6=-27 | | 10/8=16/x | | v-2.98=5.23 | | (x/100)/((7000-x)/80)=5.5 | | 2(7+8x)=12−6(2x−7)+4x | | 7.25x=-87 | | 4=10-n | | x+3.5x=390 | | (x+3)=4(x-2) | | 5(x+2)-2(x+1)=29 | | (2x-3)^2=36 | | 2x+5=5-20 | | y÷5=6 | | v+2/6=5/4 | | 3.5x=390 | | 2y-7=3y+14 | | 14=3(y+2)-7y | | 7^-5x=343 | | 4x+1049=x | | 2x^+20x+71=0 | | P(x)=500^2-14(500)+485 | | 2(x+9)=-8x+28 | | 15195=x+.17x | | 3(5x+7)=24 | | 4x-1=34-x |